

GetOSM

GetOSM is an OpenStreetMap downloader written in Python that is agnostic of GUI frameworks.
It is used with tkinter [https://docs.python.org/3/library/tkinter.html] by ProjPicker [https://github.com/HuidaeCho/projpicker].

Requirements

GetOSM uses the following standard Python modules:

	sys [https://docs.python.org/3/library/sys.html]

	math [https://docs.python.org/3/library/math.html]

	urllib.request [https://docs.python.org/3/library/urllib.request.html]

Installation

GetOSM is available at https://pypi.org/project/getosm/.

pip3 install getosm

Demo GUIs

osmtk: tkinter demo GUI

osmtk.py [https://github.com/HuidaeCho/getosm/blob/master/getosm/osmtk.py]

[image: osmtk: tkinter demo GUI]

osmtk: tkinter demo GUI

osmwx: wxPython demo GUI

osmwx.py [https://github.com/HuidaeCho/getosm/blob/master/getosm/osmwx.py]

License

Copyright (C) 2021 Huidae Cho [https://faculty.ung.edu/hcho/]

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.
If not, see <https://www.gnu.org/licenses/>.

getosm module

This module provides an OpenStreetMap tile downloader.

	
class getosm.CachedTile(image, raw)

	Provide the data structure for cached tiles. Initially, when a tile is
first downloaded in OpenStreetMap.download_tile(), its raw data is stored
in the image attribute and the raw flag is set to True. Later, when the GUI
framework needs to draw the tile on the canvas in OpenStreetMap.draw(), it
needs to convert the raw data to its own native image object. This
converted image object is stored back to the image attribute and the raw
flag is now set to False. There is no way to go back to the original raw
data.

	
class getosm.OpenStreetMap(create_image, draw_image, create_tile, draw_tile, resample_tile, width=256, height=256, lat=0, lon=0, z=0, verbose=False)

	Provide the public-facing API for downloading, dragging, zooming, and
coordinate conversions.

	
canvas_to_latlon(x, y)

	Convert canvas x and y in pixels to latitude and longitude in decimal
degrees in the current map centered at self.lat,self.lon at the zoom
level self.z. Input x and y don’t need to be ints (see
latlon_to_canvas()). They start from the upper-left corner at 0,0 on
the canvas.

	Parameters

	
	x (float) – Canvas x starting from the left at x=0 growing towards
the right by 1 for each pixel.

	y (float) – Canvas y starting from the top at y=0 growing towards
the bottom by 1 for each pixel.

	Returns

	Latitude and longitude in decimal degrees.

	Return type

	float, float

	
download(lat, lon, z)

	Download all tiles needed to cover the entire canvas centered at
latitude and lonitude at the zoom level z. Downloaded tiles are saved
in self.cached_tiles (see download_tile()). The function returns
whether or not the download session was canceled by the main thread by
setting self.cancel to True.

	Parameters

	
	lat (float) – Latitude in decimal degrees.

	lon (float) – Longitude in decimal degrees.

	z (int) – Zoom level.

	Returns

	Whether or not the download session was canceled externally
by the main thread by setting the cancel attribute to True. It’s
the responsibility of the main thread to reset the cancel attribute
to False. When the user scrolls the mouse wheel continuously to
zoom faster, the main thread needs to cancel any previous download
sessions to save data traffic and CPU time.

	Return type

	bool

	
download_tile(x, y, z)

	Download the tile at tile x,y (see latlon_to_tile()) at the zoom level
z and return its key in z/x/y. These x and y must be ints because they
are used to construct a URL for tile downloading. The raw data of the
tile is stored in self.cached_tiles with its key z/x/y (see the
CachedTile class). The function returns the tile key.

	Parameters

	
	x (int) – Tile x starting from lon=-180 growing towards the east by
1 for every tile.

	y (int) – Tile y starting from lat=85.0511 growing towards the south
by 1 for each tile.

	z (int) – Zoom level.

	Returns

	URL for the tile at tile x,y at the zoom level z.

	Return type

	str

	
drag(x, y, draw=True)

	Drag the map by x-self.drag_x and y-self.drag_y, and download necessary
tiles using self.download(). The location at x,y follows the mouse
cursor. By default, it draws the map using self.draw(). However, if
draw is False, it only downloads tiles and doesn’t draw the map. It
returns x-self.drag_x and y-self.drag_y.

	Parameters

	
	x (float) – Canvas x starting from the left at x=0 growing towards
the right by 1 for each pixel.

	y (float) – Canvas y starting from the top at y=0 growing towards
the bottom by 1 for each pixel.

	draw (bool) – Whether or not to draw the map. Defaults to True.

	Returns

	Drag amounts in x and y in pixels.

	Return type

	float, float

	
draw()

	Draw cached tiles stored in tiles on the canvas by calling callback
functions including self.create_image(), self.create_tile(),
self.draw_tile(), and self.draw_image() (see the constructor). This
function converts raw tile data to the GUI framework’s native image
format and sets its raw flag to False.

	
draw_rescaled()

	Draw rescaled tiles stored in self.rescaled_tiles on the canvas by
calling callback functions including self.create_image(),
self.create_tile(), self.draw_tile(), self.resample_tile(), and
self.draw_image() (see the constructor). This function may convert raw
tile data to the GUI framework’s native image format using
self.create_tile() and sets its raw flag to False.

	
get_bbox_xy(bbox)

	Converts a list of south, north, west, and east in decimal degrees to a
list of canvas upper-left and lower-right corner points in pixels. The
output is in [[left, top], [right, bottom]].

	Parameters

	bbox (list) – List of south, north, west, and east in decimal
degrees.

	Returns

	List of canvas upper-left and lower-right corner points in
pixels in [[left, top], [right, bottom]].

	Return type

	list

	
get_tile_url(x, y, z)

	Get the URL for the tile at tile x,y (see latlon_to_tile()) at the zoom
level z. These x and y must be ints because they are used to construct
a URL for tile downloading.

	Parameters

	
	x (int) – Tile x starting from lon=-180 growing towards the east by
1 for every tile.

	y (int) – Tile y starting from lat=85.0511 growing towards the south
by 1 for each tile.

	z (int) – Zoom level.

	Returns

	URL for the tile at tile x,y at the zoom level z.

	Return type

	str

	
get_xy(latlon)

	Converts a list of lists of latitude and longitude in decimal degrees
to a list of lists of canvas x and y in pixels. The input latlon must
be in [[lat, lon], [lat, lon], …].

	Parameters

	latlon (list) – List of lists of latitude and longitude in decimal
degrees.

	Returns

	List of lists of canvas x and y floats (see
latlon_to_canvas()) in pixels.

	Return type

	list

	
grab(x, y)

	Set self.grab_x and self.grab_y to x and y, respectively. This function
is used to signal the start of dragging events. self.drag() uses these
two attributes to calculate the x and y deltas of a dragging event.
Both x and y are mostly ints because they are canvas coordinates in
pixels, but they can also be floats.

	Parameters

	
	x (float) – Canvas x starting from the left at x=0 growing towards
the right by 1 for each pixel.

	y (float) – Canvas y starting from the top at y=0 growing towards
the bottom by 1 for each pixel.

	
latlon_to_canvas(lat, lon)

	Convert latitude and lonngitude to canvas x and y in pixels in the
current map centered at self.lat,self.lon at the zoom level self.z.
These x and y are pixel coordinates on the canvas starting from the
upper-left corner at 0,0. For now, these are floats to keep their
precision, but it can change in the future.

	Parameters

	
	lat (float) – Latitude in decimal degrees.

	lon (float) – Longitude in decimal degrees.

	Returns

	Canvas x and y in pixels starting from the upper-left
corner at x,y=0,0 growing towards the right and bottom by 1 for
each pixel.

	Return type

	float, float

	
latlon_to_tile(lat, lon, z)

	Convert latitude and lonngitude to tile x and y at the zoom level z.
Tile x and y are not ints, but they are floats to be able to tell
locations within a tile. To convert them to x and y for downloading the
tile, type cast them to int. These int x and y would correspond to the
upper-left cornder of the tile. Both x and y increase by 1 when we move
from one tile to the next. In other words, x and y are not pixel
coordinates, but they are rather the number or fractional number of
tiles starting from latitude 85.0511 and longitude -180 at the given
zoom level.

	Parameters

	
	lat (float) – Latitude in decimal degrees.

	lon (float) – Longitude in decimal degrees.

	z (int) – Zoom level.

	Returns

	Tile x, y starting from lon,lon=-180,85.0511 growing
towards the east and south by 1 for each tile.

	Return type

	float, float

	
message(*args, end=None)

	Print args to stderr immediately if self.verbose is True.

	Parameters

	
	args (str) – Arguments to print. Passed to print().

	end (str) – Passed to print(). Defaults to None.

	
redownload()

	Provide a shortcut for self.download(self.lat, self.lon, self.z). This
function can be used to redownload already downloaded tiles as its name
suggests or to download tiles for the first time when self.lat,
self.lon, and self.z are already set.

	
repeat_xy(xy)

	Repeat canvas xy points in pixels across the antimeridian. Unlike the
latitude axis, the longitude axis crosses the antimeridian from west to
east or from east to west. When the map repeats itself more than once
horizontally, geometries also need to be repeated. This function is
used to repeat xy points just enough times to cover the entire canvas.
The xy points must be in [[x, y], [x, y], …]. The return list is in
[[[x, y], [x, y], …], [[x, y], [x, y], …], …].
same list format.

	Parameters

	xy (list) – List of lists of canvas x and y in pixels.

	Returns

	List of lists of lists of canvas x and y in pixels.

	Return type

	list

	
rescale(x, y, dz, draw=True)

	Rescale the map by the delta zoom level dz relative to x,y and download
necessary tiles using self.download() if the map is rescaled. The delta
zoom level dz is a float that is accumulated in self.dz. Once self.dz
reaches 1 or -1, rescaling starts. The location at x,y stays at the
same location x,y. By default, it draws the map using self.draw().
However, if draw is False, it only computes necessary parameters and
downloads tiles without drawing the map. In this case,
self.draw_rescaled() needs to be called to actually rescale and draw
the tiles. It returns whether or not the map was rescaled.

	Parameters

	
	x (float) – Canvas x starting from the left at x=0 growing towards
the right by 1 for each pixel.

	y (float) – Canvas y starting from the top at y=0 growing towards
the bottom by 1 for each pixel.

	dz (float) – Delta zoom level.

	draw (bool) – Whether or not to draw the map. Defaults to True.

	Returns

	Whether or now the map was rescaled.

	Return type

	bool

	
reset_zoom()

	Reset the delta zoom level self.dz to restart a zooming event.

	
resize(width, height)

	Resize the canvas and redownload tiles at the same location and zoom
level.

	Parameters

	
	width (int) – New canvas width in pixels.

	height (int) – New canvas height in pixels.

	
tile_to_latlon(x, y, z)

	Convert tile x,y to latitude and longitude at the zoom level z. Tile x
and y don’t have to be ints (see latlon_to_tile()) and are not pixel
coordinates. The are the number or fractional number of tiles starting
from latitude 85.0511 and longitude -180 at the given zoom level.

	Parameters

	
	x (float) – Tile x starting from lon=-180 growing towards the east
by 1 for every tile.

	y (float) – Tile y starting from lat=85.0511 growing towards the
south by 1 for each tile.

	z (int) – Zoom level.

	Returns

	Latitude and longitude in decimal degrees.

	Return type

	float, float

	
zoom(x, y, dz, draw=True)

	Zoom the map by the delta zoom level dz relative to x,y and download
necessary tiles using self.download() if the map is zoomed. The delta
zoom level dz is a float that is accumulated in self.dz. Once self.dz
reaches 1 or -1, zooming starts. The location at x,y stays at the same
location x,y. By default, it draws the map using self.draw(). However,
if draw is False, it only downloads tiles and doesn’t draw the map. It
returns whether or not the map was zoomed.

	Parameters

	
	x (float) – Canvas x starting from the left at x=0 growing towards
the right by 1 for each pixel.

	y (float) – Canvas y starting from the top at y=0 growing towards
the bottom by 1 for each pixel.

	dz (float) – Delta zoom level.

	draw (bool) – Whether or not to draw the map. Defaults to True.

	Returns

	Whether or now the map was zoomed.

	Return type

	bool

	
zoom_to_bbox(bbox, draw=True)

	Zoom the map to the given bounding box bbox in south, north, west, and
east in decimal degrees. South must be less than north, but west may
not be less than east if the end point of the bbox is located to the
west of the start point. In this reversed west and east case, the bbox
becomes the NOT of the bbox that would be formed if west and east were
switched. By default, it draws the map using self.draw(). However, if
draw is False, it only downloads tiles and doesn’t draw the map. In
either case, it does not draw the bbox. It returns whether or not the
map was zoomed. The function returns south, north, and west as is, and
west plus the delta longitude as east so that east is always greater
than west. In this case, east can be greater than 180.

	Parameters

	
	bbox (list) – List of south, north, west, and east floats in decimal
degrees.

	draw (bool) – Whether or not to draw the map. Defaults to True.

	Returns

	South, north, west, and west plus the
delta longitude in decimal degrees.

	Return type

	float, float, float, float

	
class getosm.Tile(key, x, y, z)

	Provide the referencing data structure for tiles. The key attribute is used
to find cached raw tile data in OpenStreetMap.cached_tiles, a dictionary of
keys to CachedTile objects. The x and y attributes store the location of
the tile in pixels relative to the upper-left corner of the canvas. These
and z attributes are known when a new tile is first downloaded and its
location is computed by OpenStreetMap.download(). However, x and y can
change when the tile’s rescaling parameters are precomputed by
OpenStreetMap.rescale(). One of the rescaling parameters is the delta zoom
level dz which indicates how many zoom levels the tile should be rescaled
from its original zoom level z. OpenStreetMap.draw_rescaled() actually
rescales the tile and stores its image in the rescaled_image attribute.
Only key and z never change once they are set. Initially, dz is set to 0
and rescaled_image to None, meaning that the original raw tile is not
rescaled. Once the tile is rescaled x, y, dz, and rescaled_image are
updated.

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 g

 		 	

 		
 g	

 	
 	
 getosm	

Index

 C
 | D
 | G
 | L
 | M
 | O
 | R
 | T
 | Z

C

 	
 	CachedTile (class in getosm)

 	
 	canvas_to_latlon() (getosm.OpenStreetMap method)

D

 	
 	download() (getosm.OpenStreetMap method)

 	download_tile() (getosm.OpenStreetMap method)

 	
 	drag() (getosm.OpenStreetMap method)

 	draw() (getosm.OpenStreetMap method)

 	draw_rescaled() (getosm.OpenStreetMap method)

G

 	
 	get_bbox_xy() (getosm.OpenStreetMap method)

 	get_tile_url() (getosm.OpenStreetMap method)

 	get_xy() (getosm.OpenStreetMap method)

 	
 	
 getosm

 	module

 	grab() (getosm.OpenStreetMap method)

L

 	
 	latlon_to_canvas() (getosm.OpenStreetMap method)

 	
 	latlon_to_tile() (getosm.OpenStreetMap method)

M

 	
 	message() (getosm.OpenStreetMap method)

 	
 	
 module

 	getosm

O

 	
 	OpenStreetMap (class in getosm)

R

 	
 	redownload() (getosm.OpenStreetMap method)

 	repeat_xy() (getosm.OpenStreetMap method)

 	
 	rescale() (getosm.OpenStreetMap method)

 	reset_zoom() (getosm.OpenStreetMap method)

 	resize() (getosm.OpenStreetMap method)

T

 	
 	Tile (class in getosm)

 	
 	tile_to_latlon() (getosm.OpenStreetMap method)

Z

 	
 	zoom() (getosm.OpenStreetMap method)

 	
 	zoom_to_bbox() (getosm.OpenStreetMap method)

 nav.xhtml

 Table of Contents

 		
 GetOSM

_images/osmtk.png
Geometies | ep]|

33.7746, -84.0756

poly 33.6192,-84.4917 33.6192,-84.4354 33.6775,-84.3214 33.7129,-84.2500 33.7804,-84.2445 33.8419,-84.2514 33.8/[
point 33.9386, -84.5343
bbox 33.8179,33.8659, -84.1690, -84.0894

cancel

_static/minus.png

_static/plus.png

_static/file.png

